8 research outputs found

    Brain training in progress: a review of trainability in healthy seniors

    Get PDF
    The cognitive deterioration associated with aging is accompanied by structural alterations and loss of functionality of the frontostriatal dopamine system. The question arises how such deleterious cognitive effects could be countered. Brain training, currently highly popular among young and old alike, promises that users will improve on certain neurocognitive skills, and this has indeed been confirmed in a number of studies. Based on these results, it seems reasonable to expect beneficial effects of brain training in the elderly as well. A selective review of the existing literature suggests, however, that the results are neither robust nor consistent, and that transfer and sustained effects thus far appear limited. Based on this review, we argue for a series of elements that hold potential for progress in successful types of brain training: (1) including flexibility and novelty as features of the training, (2) focusing on a number of promising, yet largely unexplored domains, such as decision-making and memory strategy training, and (3) tailoring the training adaptively to the level and progress of the individual. We also emphasize the need for covariance-based MRI methods in linking structural and functional changes in the aging brain to individual differences in neurocognitive efficiency and trainability in order to further uncover the underlying mechanisms

    To Head or to Heed? Beyond the Surface of Selective Action Inhibition: A Review

    Get PDF
    To head rather than heed to temptations is easier said than done. Since tempting actions are often contextually inappropriate, selective suppression is invoked to inhibit such actions. Thus far, laboratory tasks have not been very successful in highlighting these processes. We suggest that this is for three reasons. First, it is important to dissociate between an early susceptibility to making stimulus-driven impulsive but erroneous actions, and the subsequent selective suppression of these impulses that facilitates the selection of the correct action. Second, studies have focused on mean or median reaction times (RT), which conceals the temporal dynamics of action control. Third, studies have focused on group means, while considering individual differences as a source of error variance. Here, we present an overview of recent behavioral and imaging studies that overcame these limitations by analyzing RT distributions. As will become clear, this approach has revealed variations in inhibitory control over impulsive actions as a function of task instructions, conflict probability, and between-trial adjustments (following conflict or following an error trial) that are hidden if mean RTs are analyzed. Next, we discuss a selection of behavioral as well as imaging studies to illustrate that individual differences are meaningful and help understand selective suppression during action selection within samples of young and healthy individuals, but also within clinical samples of patients diagnosed with attention deficit/hyperactivity disorder or Parkinson's disease

    Neural Correlates of Dynamically Evolving Interpersonal Ties Predict Prosocial Behavior

    Get PDF
    There is a growing interest for the determinants of human choice behavior in social settings. Upon initial contact, investment choices in social settings can be inherently risky, as the degree to which the other person will reciprocate is unknown. Nevertheless, people have been shown to exhibit prosocial behavior even in one-shot laboratory settings where all interaction has been taken away. A logical step has been to link such behavior to trait empathy-related neurobiological networks. However, as a social interaction unfolds, the degree of uncertainty with respect to the expected payoff of choice behavior may change as a function of the interaction. Here we attempt to capture this factor. We show that the interpersonal tie one develops with another person during interaction – rather than trait empathy – motivates investment in a public good that is shared with an anonymous interaction partner. We examined how individual differences in trait empathy and interpersonal ties modulate neural responses to imposed monetary sharing. After, but not before interaction in a public good game, sharing prompted activation of neural systems associated with reward (striatum), empathy (anterior insular cortex and anterior cingulate cortex) as well as altruism, and social significance [posterior superior temporal sulcus (pSTS)]. Although these activations could be linked to both empathy and interpersonal ties, only tie-related pSTS activation predicted prosocial behavior during subsequent interaction, suggesting a neural substrate for keeping track of social relevance

    A Tribute to Charlie Chaplin: Induced Positive Affect Improves Reward-Based Decision-Learning in Parkinson’s Disease

    Get PDF
    Reward-based decision-learning refers to the process of learning to select those actions that lead to rewards while avoiding actions that lead to punishments. This process, known to rely on dopaminergic activity in striatal brain regions, is compromised in Parkinson’s disease (PD). We hypothesized that such decision-learning deficits are alleviated by induced positive affect, which is thought to incur transient boosts in midbrain and striatal dopaminergic activity. Computational measures of probabilistic reward-based decision-learning were determined for 51 patients diagnosed with PD. Previous work has shown these measures to rely on the nucleus caudatus (outcome evaluation during the early phases of learning) and the putamen (reward prediction during later phases of learning). We observed that induced positive affect facilitated learning, through its effects on reward prediction rather than outcome evaluation. Viewing a few minutes of comedy clips served to remedy dopamine-related problems associated with frontostriatal circuitry and, consequently, learning to predict which actions will yield reward

    Attention and alcohol cues: a role for medial parietal cortex and shifting away from alcohol features?

    Get PDF
    Attention plays a central role in theories of alcohol dependence; however, its precise role in alcohol-related biases is not yet clear. In the current study, social drinkers performed a spatial cueing task designed to evoke conflict between automatic processes due to incentive salience and control exerted to follow task-related goals. Such conflict is a potentially important task feature from the perspective of dual-process models of addiction. Subjects received instructions either to direct their attention towards pictures of alcoholic beverages, and away from non-alcohol beverages; or to direct their attention towards pictures of non-alcoholic beverages, and away from alcohol beverages. A probe stimulus was likely to appear at the attended location, so that both spatial and non-spatial interference was possible. Activation in medial parietal cortex was found during Approach Alcohol versus Avoid Alcohol blocks. This region is associated with the, possibly automatic, shifting of attention between stimulus features, suggesting that subjects may have shifted attention away from certain features of alcoholic cues when attention had to be directed towards an upcoming stimulus at their location. Further, activation in voxels close to this region was negatively correlated with riskier drinking behavior. A tentative interpretation of the results is that risky drinking may be associated with a reduced tendency to shift attention away from potentially distracting task-irrelevant alcohol cues. The results suggest novel hypotheses and directions for future study, in particular towards the potential therapeutic use of training the ability to shifting attention away from alcohol-related stimulus features

    Paired-pulse transcranial magnetic stimulation reveals probability-dependent changes in functional connectivity between right inferior frontal cortex and primary motor cortex during go/no-go performance

    No full text
    The functional role of the right inferior frontal cortex (rIFC) in mediating human behavior is the subject of ongoing debate. Activation of the rIFC has been associated with both response inhibition and with signaling action adaptation demands resulting from unpredicted events. The goal of this study is to investigate the role of rIFC by combining a go/no-go paradigm with paired-pulse transcranial magnetic stimulation (ppTMS) over rIFC and the primary motor cortex (M1) to probe the functional connectivity between these brain areas. Participants performed a go/no-go task with 20% or 80% of the trials requiring response inhibition (no-go trials) in a classic and a reversed version of the task, respectively. Responses were slower to infrequent compared to frequent go trials, while commission errors were more prevalent to infrequent compared to frequent no-go trials. We hypothesized that if rIFC is involved primarily in response inhibition, then rIFC should exert an inhibitory influence over M1 on no-go (inhibition) trials regardless of no-go probability. If, by contrast, rIFC has a role on unexpected trials other than just response inhibition then rIFC should influence M1 on infrequent trials regardless of response demands. We observed that rIFC suppressed M1 excitability during frequent no-go trials, but not during infrequent no-go trials, suggesting that the role of rIFC in response inhibition is context dependent rather than generic. Importantly, rIFC was found to facilitate M1 excitability on all low frequent trials, irrespective of whether the infrequent event involved response inhibition, a finding more in line with a predictive coding framework of cognitive control

    Individual differences in risky decision-making among seniors reflect increased reward sensitivity

    Get PDF
    Increasing age is associated with subtle but meaningful changes in decision-making. It is unknown, however, to what degree these psychological changes are reflective of age-related changes in decision quality. Here, we investigated the effect of age on latent cognitive processes associated with risky decision-making on the Balloon Analogue Risk Task (BART). In the BART, participants repetitively inflate a balloon in order to increase potential reward. At any point, participants can decide to cash out to harvest the reward, or they can continue, risking a balloon pop that erases all earnings. We found that among seniors, increasing age was associated with greater reward-related risk taking when the balloon has a higher probability of popping (i.e., a high risk condition). Cognitive modeling results from hierarchical Bayesian estimation suggested that performance differences were due to increased reward sensitivity in high risk conditions in seniors
    corecore